3.28 \(\int \frac{(a+b x^2)^2}{x^{10}} \, dx\)

Optimal. Leaf size=30 \[ -\frac{a^2}{9 x^9}-\frac{2 a b}{7 x^7}-\frac{b^2}{5 x^5} \]

[Out]

-a^2/(9*x^9) - (2*a*b)/(7*x^7) - b^2/(5*x^5)

________________________________________________________________________________________

Rubi [A]  time = 0.0099824, antiderivative size = 30, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077, Rules used = {270} \[ -\frac{a^2}{9 x^9}-\frac{2 a b}{7 x^7}-\frac{b^2}{5 x^5} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^2/x^10,x]

[Out]

-a^2/(9*x^9) - (2*a*b)/(7*x^7) - b^2/(5*x^5)

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^2}{x^{10}} \, dx &=\int \left (\frac{a^2}{x^{10}}+\frac{2 a b}{x^8}+\frac{b^2}{x^6}\right ) \, dx\\ &=-\frac{a^2}{9 x^9}-\frac{2 a b}{7 x^7}-\frac{b^2}{5 x^5}\\ \end{align*}

Mathematica [A]  time = 0.0007196, size = 30, normalized size = 1. \[ -\frac{a^2}{9 x^9}-\frac{2 a b}{7 x^7}-\frac{b^2}{5 x^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^2/x^10,x]

[Out]

-a^2/(9*x^9) - (2*a*b)/(7*x^7) - b^2/(5*x^5)

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 25, normalized size = 0.8 \begin{align*} -{\frac{{a}^{2}}{9\,{x}^{9}}}-{\frac{2\,ab}{7\,{x}^{7}}}-{\frac{{b}^{2}}{5\,{x}^{5}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2/x^10,x)

[Out]

-1/9*a^2/x^9-2/7*a*b/x^7-1/5*b^2/x^5

________________________________________________________________________________________

Maxima [A]  time = 1.26352, size = 35, normalized size = 1.17 \begin{align*} -\frac{63 \, b^{2} x^{4} + 90 \, a b x^{2} + 35 \, a^{2}}{315 \, x^{9}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/x^10,x, algorithm="maxima")

[Out]

-1/315*(63*b^2*x^4 + 90*a*b*x^2 + 35*a^2)/x^9

________________________________________________________________________________________

Fricas [A]  time = 1.39523, size = 63, normalized size = 2.1 \begin{align*} -\frac{63 \, b^{2} x^{4} + 90 \, a b x^{2} + 35 \, a^{2}}{315 \, x^{9}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/x^10,x, algorithm="fricas")

[Out]

-1/315*(63*b^2*x^4 + 90*a*b*x^2 + 35*a^2)/x^9

________________________________________________________________________________________

Sympy [A]  time = 0.434991, size = 27, normalized size = 0.9 \begin{align*} - \frac{35 a^{2} + 90 a b x^{2} + 63 b^{2} x^{4}}{315 x^{9}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2/x**10,x)

[Out]

-(35*a**2 + 90*a*b*x**2 + 63*b**2*x**4)/(315*x**9)

________________________________________________________________________________________

Giac [A]  time = 1.35684, size = 35, normalized size = 1.17 \begin{align*} -\frac{63 \, b^{2} x^{4} + 90 \, a b x^{2} + 35 \, a^{2}}{315 \, x^{9}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/x^10,x, algorithm="giac")

[Out]

-1/315*(63*b^2*x^4 + 90*a*b*x^2 + 35*a^2)/x^9